Dataset¶
-
impyute.dataset.
mnist
(missingness='mcar', thr=0.2)[source]¶ Loads corrupted MNIST
Parameters: - missingness: (‘mcar’, ‘mar’, ‘mnar’)
Type of missigness you want in your dataset
- th: float between [0,1]
Percentage of missing data in generated data
Returns: - numpy.ndarray
-
impyute.dataset.
randn
(theta=(0, 1), shape=(5, 5), missingness='mcar', thr=0.2, dtype='float')[source]¶ Return randomly generated dataset of numbers with normally distributed values with given and sigma.
Parameters: - theta: tuple (mu, sigma)
Determines the range of values in the matrix
- shape:tuple(optional)
Size of the randomly generated data
- missingness: (‘mcar’, ‘mar’, ‘mnar’)
Type of missingness you want in your dataset
- thr: float between [0,1]
Percentage of missing data in generated data
- dtype: (‘int’,’float’)
Type of data
Returns: - numpy.ndarray
-
impyute.dataset.
randu
(bound=(0, 10), shape=(5, 5), missingness='mcar', thr=0.2, dtype='int')[source]¶ Return randomly generated dataset of numbers with uniformly distributed values between bound[0] and bound[1]
Parameters: - bound:tuple (start,stop)
Determines the range of values in the matrix. Index 0 for start value and index 1 for stop value. Start is inclusive, stop is exclusive.
- shape:tuple(optional)
Size of the randomly generated data
- missingness: (‘mcar’, ‘mar’, ‘mnar’)
Type of missingness you want in your dataset
- thr: float between [0,1]
Percentage of missing data in generated data
- dtype: (‘int’,’float’)
Type of data
Returns: - numpy.ndarray