Source code for impyute.imputation.cs.mice

""" impyute.imputation.cs.mice """
import numpy as np
from sklearn.linear_model import LinearRegression
from impyute.util import find_null
from impyute.util import checks
from impyute.util import preprocess
# pylint: disable=too-many-locals
# pylint:disable=invalid-name
# pylint:disable=unused-argument

[docs]@preprocess @checks def mice(data, **kwargs): """Multivariate Imputation by Chained Equations Reference: Buuren, S. V., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3). doi:10.18637/jss.v045.i03 Implementation follows the main idea from the paper above. Differs in decision of which variable to regress on (here, I choose it at random). Also differs in stopping criterion (here the model stops after change in prediction from previous prediction is less than 10%). Parameters ---------- data: numpy.ndarray Data to impute. Returns ------- numpy.ndarray Imputed data. """ null_xy = find_null(data) # Add a column of zeros to the index values null_xyv = np.append(null_xy, np.zeros((np.shape(null_xy)[0], 1)), axis=1) null_xyv = [[int(x), int(y), v] for x, y, v in null_xyv] temp = [] cols_missing = set([y for _, y, _ in null_xyv]) # Step 1: Simple Imputation, these are just placeholders for x_i, y_i, value in null_xyv: # Column containing nan value without the nan value col = data[:, [y_i]][~np.isnan(data[:, [y_i]])] new_value = np.mean(col) data[x_i][y_i] = new_value temp.append([x_i, y_i, new_value]) null_xyv = temp # Step 5: Repeat step 2 - 4 until convergence (the 100 is arbitrary) converged = [False] * len(null_xyv) while all(converged): # Step 2: Placeholders are set back to missing for one variable/column dependent_col = int(np.random.choice(list(cols_missing))) missing_xs = [int(x) for x, y, value in null_xyv if y == dependent_col] # Step 3: Perform linear regression using the other variables x_train, y_train = [], [] for x_i in (x_i for x_i in range(len(data)) if x_i not in missing_xs): x_train.append(np.delete(data[x_i], dependent_col)) y_train.append(data[x_i][dependent_col]) model = LinearRegression() model.fit(x_train, y_train) # Step 4: Missing values for the missing variable/column are replaced # with predictions from our new linear regression model temp = [] # For null indices with the dependent column that was randomly chosen for i, x_i, y_i, value in enumerate(null_xyv): if y_i == dependent_col: # Row 'x' without the nan value new_value = model.predict(np.delete(data[x_i], dependent_col)) data[x_i][y_i] = new_value.reshape(1, -1) temp.append([x_i, y_i, new_value]) delta = (new_value-value)/value if delta < 0.1: converged[i] = True null_xyv = temp return data